Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

## Exercises – week 2

**Exercise 1.** Sheaves of abelian groups. Let X be a topological space. Let  $\mathcal{F}, \mathcal{G}$  be sheaves of abelian groups and  $\varphi : \mathcal{F} \to \mathcal{G}$  a morphisms of sheaves of abelian groups.

(1) Let  $\ker(\varphi)$  and  $\operatorname{im}(\varphi)$  be respectively the kernel sheaf and the image sheaf.<sup>1</sup> Show that for every  $x \in X$ , one can define natural maps which are isomorphisms

$$\ker(\varphi)_x \to \ker(\varphi_x)$$
 and  $\operatorname{im}(\varphi)_x \to \operatorname{im}(\varphi_x)$ .

- (2) Show that  $\varphi$  is an injective morphism of sheaves (resp. surjective morphism of sheaves) if and only if for every  $x \in X$  the morphism of abelian groups  $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$  is injective (resp. surjective).
- (3) Show that  $\varphi$  is a surjective morphism of sheaves if and only if for every U open and  $s \in \mathcal{G}(U)$ , there exists an open cover  $U = \bigcup U_i$  and sections  $t_i \in \mathcal{F}(U_i)$  with  $\varphi(t_i) = s_{U_i}$ .
- (4) Show that the natural map  $\operatorname{im}(\varphi) \to \mathcal{G}$  is injective.
- (5) Show that  $\varphi$  is an isomorphism if and only if it is an injective morphism of sheaves and a surjective morphism of sheaves.
- (6) Let  $f = X \to *$  be the unique morphism to the point. Show that  $f_* = \Gamma(X, -) : \operatorname{Sh}_{Ab}(X) \to \operatorname{Ab}$  is left-exact. Give an example to show that  $f_*$  is not right-exact in general.

**Exercise 2.** Gluing sheaves. Let X be a topological space and  $\bigcup U_i = X$  an open cover of X. Let  $(\mathcal{F}_i \in \operatorname{Sh}(U_i), \varphi_{ij})$  be a collection of sheaves on  $\operatorname{Sh}(U_i)$  together with isomorphisms

$$\varphi_{ij} \colon \mathcal{F}_{i|U_{ij}} \xrightarrow{\sim} \mathcal{F}_{j|U_{ij}}$$

in  $Sh(U_{ij})$  satisfying for each i that  $id = \varphi_{ii}$  and for each i, j, k the following cocycle condition  $\varphi_{ik} = \varphi_{jk}\varphi_{ij}$ .

Show that there exists a unique<sup>2</sup> sheaf  $\mathcal{F} \in \operatorname{Sh}(X)$  with maps  $\psi_i : \mathcal{F}_{|U_i} \to \mathcal{F}_i$  with the following universal property: for all sheaves  $\mathcal{G} \in \operatorname{Sh}(X)$  we have a a bijection

$$\operatorname{Hom}(\mathcal{G},\mathcal{F}) \cong \left\{ (\mathcal{G}_{|U_i} \xrightarrow{f_i} \mathcal{F}_i) \in \prod_i \operatorname{Hom}(\mathcal{G}_{|U_i},\mathcal{F}_i) \mid \text{s.t. for all } i,j : \varphi_{ij} f_i = f_j \right\}$$

given by  $f \mapsto \psi_i f_{|U_i}$ .

Show furthermore that  $\psi_i$  are isomorphisms.

<sup>&</sup>lt;sup>1</sup>The kernel sheaf is the kernel presheaf but the image sheaf is the *sheafification* of the image presheaf.

<sup>&</sup>lt;sup>2</sup>up to isomorphism.

**Remark.** Can you see how the last exercise resembles the following statement: " $U \mapsto \operatorname{Sh}(U)$  is a sheaf"?

**Exercise 3.** Inverse image. Let  $f: X \to Y$ . Let  $\mathcal{F} \in Sh(Y)$ . We define the presheaf on X

$$f^{\sharp}\mathcal{F}(U) = \varinjlim_{V \supset f(U)} \mathcal{F}(V).$$

- (1) Show that if  $f: * \to X$  is a point  $x \in X$  then  $f^{\sharp} \mathcal{F} = \mathcal{F}_x$ .
- (2) Show that if y = f(x) then there is a natural isomorphism

$$(f^{\sharp}\mathcal{F})_x \to \mathcal{F}_y.$$

- (3) Show that if f is an open immersion, then  $f^{\sharp}$  is a sheaf.
- (4) Find an example of map of topological spaces  $f: X \to Y$  and a sheaf  $\mathcal{F}$  on Y such that  $f^{\sharp}\mathcal{F}$  is *not* a sheaf.
- (5) Let  $f^{-1}\mathcal{F}$  be the sheafification of  $f^{\sharp}\mathcal{F}$ . We call this sheaf the *inverse* image of  $\mathcal{F}$ . Show that the  $f^{-1} \dashv f_*^3$  meaning that there is a natural isomorphism

$$\operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathcal{F},\mathcal{G}) \cong \operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathcal{F},f_*\mathcal{G}).$$

**Exercise 4.** Localization Let R be a ring. Let S be a multiplicative subset.

- (1) Describe the points of  $\operatorname{Spec}(S^{-1}R)$ . If  $\mathfrak{p} \in \operatorname{Spec}(R)$  show that  $\operatorname{Spec}(R_{\mathfrak{p}})$  is the intersection of all opens containing  $\mathfrak{p}$ .
- (2) Let M be an R-module and  $I \supseteq R$  an ideal. Show that there is an isomorphism

$$S^{-1}(M/I) \cong (S^{-1}M)/(IS^{-1}M).$$

(3) Let  $\mathfrak{p} \in \operatorname{Spec}(R)$  and  $I \leq R$  and ideal. When

$$(R/I)_{\mathfrak{p}} = 0$$
 ?

Can you interpret this geometrically?

- (4) Let R be integral. Identify the image of the injective map  $S^{-1}R \to \operatorname{Frac}(R)$ .
- (5) Let  $R = \mathbb{Z}[x]$ . Describe the localization at the maximal ideal (p, x).

**Exercise 5.** Affine schemes are quasi-compact. Let R be a ring. Show that  $\operatorname{Spec}(R)$  is quasi-compact.<sup>4</sup> Deduce that the underlying topological space of any (affine) scheme has a basis of quasi-compact open subsets.

**Exercise 6.** Connected affine schemes. We say that a ring R is connected if for all  $a, b \in R$  if

$$a+b=1$$
 and  $ab=0$ 

then exactly one of the two elements is non-zero.

<sup>&</sup>lt;sup>3</sup>We say that  $f^{-1}$  is left adjoint to  $f_*$ 

 $<sup>^4</sup>$ A topological space X is *quasi-compact* if every open cover of X can be refined to a finite cover.

- (1) Show that it is equivalent to the fact there is exactly two idempotents (namely 0 and 1) in the ring R.
- (2) Show that R is connected if and only if Spec(R) is connected.

## Exercise 7. Stalks, morphisms and cotangent spaces

(1) Let  $X \to Y$  be a continuous map between topological spaces, and  $\mathcal{F}$  a sheaf on X. Let  $x \in X$  and y = f(x). Show that there is a natural map

$$(f_*\mathcal{F})_y \to \mathcal{F}_x$$
.

**Remark.** This is used to define the *induced map on local rings* of a map of locally ringed spaces. Namely if  $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$  is one, with  $f^{\sharp}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ , the induced map on local rings is for x = f(y),

$$\mathcal{O}_{Y,y} \xrightarrow{f_y^{\sharp}} (f_*\mathcal{O}_X)_y \to \mathcal{O}_{X,x}.$$

(2) Let R be an integral domain. Consider  $\varphi \colon R[x,y] \to R[x,y]$  defined by  $x \mapsto xy$  and  $y \mapsto y$ . Consider

$$f : \operatorname{Spec}(R[x, y]) \to \operatorname{Spec}(R[x, y])$$

the induced map on associated affine schemes.<sup>5</sup> Show that for all  $\lambda \in R$  we have  $f((x - \lambda, y)) = (x, y)$ .

(3) Let now R=k a field. With point (1) and the remark there is induced map on local rings

$$k[x,y]_{(x,y)} \to k[x,y]_{(x-\lambda,y)}.$$

We write  $\mathfrak{m}_{(0,0)}:=\mathfrak{m}_{(x,y)}$  and  $\mathfrak{m}_{(\lambda,0)}:=\mathfrak{m}_{(x-\lambda,y)}$  for the maximal ideals of these local rings. Understand the induced k-linear map

$$\mathfrak{m}_{(0,0)}/\mathfrak{m}_{(0,0)}^2 \to \mathfrak{m}_{(\lambda,0)}/\mathfrak{m}_{(\lambda,0)}^2$$
.

This mean the following: find a k-basis of these vector spaces and describe the matrix of the map in term of your chosen basis.

**Remark.** We will later see that these vector spaces are the *cotangent* spaces at (0,0) and  $(\lambda,0)$  respectively and that the map that you studied is the precomposition by the differential of f at these points.

Exercise to hand in. *Induced map on Spec* (Due Sunday September 29, 18:00)

Please write your solution in T<sub>E</sub>X.

Let  $f: R \to S$  be a ring homomorphism. Denote the induced map  $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$  by  $f^{\#}$ .

- (1) Show that the closure of the image of  $f^{\#}$  is  $V(\ker(f))$ . Find a ring theoretic property of f which is equivalent to the denseness of image of  $f^{\#}$  in  $\operatorname{Spec}(R)$ .
- (2) Find an example of a ring map where the image of the induced map on Spec is not closed. Find an example where the image is closed.

<sup>&</sup>lt;sup>5</sup>Recall that the induced map on Spec is given by the preimage  $\varphi^{-1}$ 

(3) Take  $\mathfrak{q} \in \operatorname{Spec}(R)$ . Set W to be the multiplicative subset  $R \setminus \mathfrak{q}$ . Prove that  $(f^{\#})^{-1}(\{\mathfrak{q}\})$ , as a set, is the underlying topological space of  $\operatorname{Spec}(f(W)^{-1}(S/\mathfrak{q}S))$ . Prove that

$$f(W)^{-1}(S/\mathfrak{q}S) \cong (R/\mathfrak{q})_{\mathfrak{q}} \otimes_R S$$

as rings. Here  $\mathfrak{q}S$  denotes the ideal of S generated by  $f(\mathfrak{q})$ .

- (4) Let  $\iota : \mathbb{Z} \to \mathbb{Z}[X]$  be the inclusion map. Given a prime ideal  $p\mathbb{Z}$  of  $\mathbb{Z}$ , describe  $(\iota^{\#})^{-1}(p\mathbb{Z})$ .
- (5) Denote the algebraic closure of  $\mathbb{Q}$  by  $\overline{\mathbb{Q}}$ . Let  $\iota : \mathbb{Q}[X] \to \overline{\mathbb{Q}}[X]$  be the inclusion. Given an irreducible polynomial  $g \in \mathbb{Q}[X]$ , describe  $(\iota^{\#})^{-1}(g\mathbb{Q}[X])$ . Recall that for an irreducible polynomial g, the ideal  $g\mathbb{Q}[X]$  is a prime ideal.
- (6) Explain how Hilbert's Nullstellensatz gives a set-theoretic injection of  $\mathbb{C}^2$  onto the closed points of  $\operatorname{Spec}(\mathbb{C}[X,Y])$ . Then, let  $g\in\mathbb{C}[X,Y]$  be given. Show that there is a finite set of points  $T\subseteq\operatorname{Spec}(\mathbb{C}[X,Y])$ , such that the closed points in the closure  $\overline{T}$  in  $\operatorname{Spec}(\mathbb{C}[X,Y])$  are exactly the zeroes of g in  $\mathbb{C}^2\subseteq\operatorname{Spec}(\mathbb{C}[X,Y])$ . Describe the smallest such T in terms of g.